(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

anchored(Cons(x, xs), y) → anchored(xs, Cons(Cons(Nil, Nil), y))
anchored(Nil, y) → y
goal(x, y) → anchored(x, y)

Rewrite Strategy: INNERMOST

(1) DecreasingLoopProof (EQUIVALENT transformation)

The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
anchored(Cons(x, xs), y) →+ anchored(xs, Cons(Cons(Nil, Nil), y))
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [xs / Cons(x, xs)].
The result substitution is [y / Cons(Cons(Nil, Nil), y)].

(2) BOUNDS(n^1, INF)

(3) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(4) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

anchored(Cons(x, xs), y) → anchored(xs, Cons(Cons(Nil, Nil), y))
anchored(Nil, y) → y
goal(x, y) → anchored(x, y)

S is empty.
Rewrite Strategy: INNERMOST

(5) SlicingProof (LOWER BOUND(ID) transformation)

Sliced the following arguments:
Cons/0

(6) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

anchored(Cons(xs), y) → anchored(xs, Cons(y))
anchored(Nil, y) → y
goal(x, y) → anchored(x, y)

S is empty.
Rewrite Strategy: INNERMOST

(7) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(8) Obligation:

Innermost TRS:
Rules:
anchored(Cons(xs), y) → anchored(xs, Cons(y))
anchored(Nil, y) → y
goal(x, y) → anchored(x, y)

Types:
anchored :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
gen_Cons:Nil2_0 :: Nat → Cons:Nil

(9) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
anchored

(10) Obligation:

Innermost TRS:
Rules:
anchored(Cons(xs), y) → anchored(xs, Cons(y))
anchored(Nil, y) → y
goal(x, y) → anchored(x, y)

Types:
anchored :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
gen_Cons:Nil2_0 :: Nat → Cons:Nil

Generator Equations:
gen_Cons:Nil2_0(0) ⇔ Nil
gen_Cons:Nil2_0(+(x, 1)) ⇔ Cons(gen_Cons:Nil2_0(x))

The following defined symbols remain to be analysed:
anchored

(11) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
anchored(gen_Cons:Nil2_0(n4_0), gen_Cons:Nil2_0(b)) → gen_Cons:Nil2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)

Induction Base:
anchored(gen_Cons:Nil2_0(0), gen_Cons:Nil2_0(b)) →RΩ(1)
gen_Cons:Nil2_0(b)

Induction Step:
anchored(gen_Cons:Nil2_0(+(n4_0, 1)), gen_Cons:Nil2_0(b)) →RΩ(1)
anchored(gen_Cons:Nil2_0(n4_0), Cons(gen_Cons:Nil2_0(b))) →IH
gen_Cons:Nil2_0(+(+(b, 1), c5_0))

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(12) Complex Obligation (BEST)

(13) Obligation:

Innermost TRS:
Rules:
anchored(Cons(xs), y) → anchored(xs, Cons(y))
anchored(Nil, y) → y
goal(x, y) → anchored(x, y)

Types:
anchored :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
gen_Cons:Nil2_0 :: Nat → Cons:Nil

Lemmas:
anchored(gen_Cons:Nil2_0(n4_0), gen_Cons:Nil2_0(b)) → gen_Cons:Nil2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)

Generator Equations:
gen_Cons:Nil2_0(0) ⇔ Nil
gen_Cons:Nil2_0(+(x, 1)) ⇔ Cons(gen_Cons:Nil2_0(x))

No more defined symbols left to analyse.

(14) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
anchored(gen_Cons:Nil2_0(n4_0), gen_Cons:Nil2_0(b)) → gen_Cons:Nil2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)

(15) BOUNDS(n^1, INF)

(16) Obligation:

Innermost TRS:
Rules:
anchored(Cons(xs), y) → anchored(xs, Cons(y))
anchored(Nil, y) → y
goal(x, y) → anchored(x, y)

Types:
anchored :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
gen_Cons:Nil2_0 :: Nat → Cons:Nil

Lemmas:
anchored(gen_Cons:Nil2_0(n4_0), gen_Cons:Nil2_0(b)) → gen_Cons:Nil2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)

Generator Equations:
gen_Cons:Nil2_0(0) ⇔ Nil
gen_Cons:Nil2_0(+(x, 1)) ⇔ Cons(gen_Cons:Nil2_0(x))

No more defined symbols left to analyse.

(17) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
anchored(gen_Cons:Nil2_0(n4_0), gen_Cons:Nil2_0(b)) → gen_Cons:Nil2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)

(18) BOUNDS(n^1, INF)